
MESH MULTIPLICATION PACKAGE INTO
CODE_SATURNE AND ACHIEVED RESULTS

A. Ronovský, P. Kabelíková, V. Vondrák, C. Moulinec

Paris - Chatou, France
9.4.2013

Code_Saturne user meeting 2013

Contents

• Motivation

• Preprocessing

• Mesh
Multiplication

• Results

• Perspectives

How to achieve exascale

 … -> Peta -> Exa

• PRACE, EDF + STFC + IT4I

• Real complex problem

• Fully defined

• Test case: LES in staggered distributed tube
bundles

• Architecture

• Solver -> Code_Saturne

• Large mesh (3D) – mesh generators?

• Post-processing

• Visualization

Mesh Multiplication - Overview
– Working with mesh of Billion cells

– Create or load such a mesh is very expensive

– Global refinement

– Existing coarse mesh suitable for CFD simulations,
changing size by subdivision of each cell

– Creating very fine mesh, much lesser time of loading and
partitioning

– higher accuracy of the solution is attained

– 13 million cell mesh to 6.6 Billion – 10 time steps

– 51 million cell mesh to 26 Billion – 1 time step

– Code_Saturne is able to solve that large problem

Mesh Multiplication - Connectivity
• Several methods of subdivision

• Different behaviour of refinement
for hexahedra, tetrahedra, prism or
pyramid cells

• Edge midpoints subdivision

• Global connectivity ensured

• Cheap way of indices computation

• No unnecessary core-to-core
communication

• Reasonable times of refinement due
to the time of whole simulation

• Lot of computational time saved =
lot of resources saved for solver

MM and cs_solver.c
• Initialization (global structures)
• Define mesh to read
• Define joining and periodicity
• Set partitioning options
• Read preprocessor output
• Mesh Multiplication
• Mesh joining
• Initialize extended connectivity, ghost cells, halo
• Other mesh modifications (geometry, smoothing)
• Save mesh and discard all temporary structures
• Renumbering of a mesh, group classes, quantities, …
• Main computation
• …

Mesh Multiplication - Algorithm
• Input: coarse mesh
• Pre-processing:

– Create edge local/global numbering,
– Create faces to edge connectivity,
– Define cells.

• Refinement:
– Create new vertices on edges, on border and interior rectangular faces,
– Refine all faces that inherit family and group from parent.

• Cell refinement:
Preparation:
– Create new vertex in the centre of gravity of the hexahedral cell,
– Order faces of the cell to ensure positiveness of normal vectors,
– Prepare indices of vertices.
Cell subdivision:
– Refine the cell,
– Create new interior faces,
– Assign proper face to cell connectivity to each new face and cell.

• Output: refined mesh.

Mesh Multiplication - Indexation
• Vertices

– From coarse mesh keep indices

– Edge vertex: n_vertices + edge_idx

– Rectangular face vertex: n_vertices + n_edges + face_idx

– Hexa cell vertex: n_vertices + n_edges + n_faces + cell_idx

• Faces
– Every face refined into 4

– Refined face: 4*(face_idx - 1) + 1:4

– New face (cell subdivision): 4*n_faces + T*(cell_idx-1) + 1:T

– T – depends on mesh (12 for hexa, tetra, 10 for prism,…)

• Cells
– New cell: T*(cell_idx-1) + 1:T

– T – depends on mesh (8 for hexa, tetra, prism, …)

Results

• Different architectures

• Different cases

• Mesh of 51 million cells

• Refined to 26 Billion on 65k cores

• 1 time step C_S – 12288 MPI + 8 OpenMP = ~500s

Scalability

0

5

10

15

20

25

0 10000 20000 30000 40000 50000 60000 70000

ti
m

e
 t

o
 r

e
fi

n
e

 (
se

c)

number of cores

Scalability
1,6B (26M-2levels)

3,3B(51M-2levels)

6.6B(13M-3levels)

13B(26M-3levels)

26B(51M-3levels)

• Good scalability up
to 65k cores

• MM takes just a
fraction of time due
to whole
computation

• MM of coarser mesh
is much cheaper
then creating and
loading fine mesh

Perspectives
• cs_user_mesh

– Pyramids and prisms – hybrid meshes

– Option of mesh multiplication for every C_S user (0-default)

• Adaptive refinement

– Global refinement adaptive to geometry

– Local refinement based on a priori (geometry,…) and a
posteriori (gradient, error, …) estimates

– Remeshing, demeshing

– Floating parts of a mesh, changing size, shape

• Polyhedral meshes

– Global/ adaptive refinement of general polyhedral mesh

THANK YOU

